约彩365安卓版本

燃料电池

燃料电池

燃料電池有多種類型,但是它們都有相同的工作模式。它們主要由三個相鄰區段組成:陽極、電解質和陰極。兩個化學反應發生在三個不同區段的介面之間。兩種反應的淨結果是燃料的消耗、水或二氧化碳的產生,和電流的產生,而生成的电流可以直接用於電力設備,即通常所稱的負載。

在陽極上,催化劑將燃料(通常是氫氣)氧化,使燃料變成一個正電荷的離子和一個負電荷的電子。電解液经專門設計使得離子可以通過,而電子則无法通过。被釋放的電子穿過一條電線,因而產生電流。離子通過電解液前往陰極。一旦達到陰極,離子與電子團聚,兩者與第三化學品(通常為氧氣)一起反應,而產生水或二氧化碳。

燃料電池示意圖

在燃料電池中較重要的設計特徵是:

電解質材料。電解質材料通常決定了燃料電池的類型。

使用的燃料。最常見的燃料是氫氣。

陽極催化劑,用來將燃料分解成電子和離子。陽極催化劑通常由極細的鉑粉製成。

陰極催化劑,用來將離子轉換成像水或二氧化碳的廢棄化學物質。陰極催化劑通常由鎳製成,但也有納米材料催化劑。

典型的燃料電池在全額負載下可產生0.6 V至0.7 V的電壓。導致随電流上升,電壓下降的幾個原因如下:

過電位

歐姆損耗(因電池元件和接連的阻抗而導致壓降)

大規模傳輸損耗(在高負載下,催化劑端的反應物損耗造成電壓的快速下降)[10]

為了提供所需要的能量,可以將組合多個燃料電池进行串聯以產生較高電壓,或並聯供應較大電流。這種設計被稱為「燃料電池堆疊」。就個別電池而言,可以增加其表面積以獲得較大電流。在堆疊中,反應物氣體應均勻分佈於所有電池,以獲得最大的功率輸出。

質子交換膜燃料電池(PEMFC)

编辑

主条目:質子交換膜燃料電池

原型的質子交換膜燃料電池的[11]效率前緣(英语:Efficient frontier)[12]設計、質子導電聚合物膜(電解質)的分隔主要在陽極和陰極雙方。這也被稱為固態聚合物電解質燃料電池(solid polymer electrolyte fuel cell, SPEFC),這是因為在1970年代初之前的質子交換機制尚未被完全理解。(注意:同義字「聚合物電解質膜」和「質子交換機制」有相同的英文字母縮寫。)

高溫質子交換膜燃料電池(PEMFC)的构造图:通过导电复合材料制造(可使用石墨、炭黑、碳纤维以及/或者碳纳米管增强导电性)的、有铣削出的气体通道结构的双极板;[13]多孔碳布;扩散层(通常在聚合物薄膜上);聚合物膜

由質子交換膜燃料電池(PEMFC)的空氣通道壁產生的冷凝水。電池周圍的金線確保電流的匯集[14]

陽極一邊的氫流到陽極催化劑,並分離成質子和電子,運作溫度約80-100℃。這些質子與氧化劑產生反應導致他們成為通常所指的多元促進質子膜。質子,透過膜到陰極,但電子被迫移動(為提供電源)到外部電路因為電絕緣膜。陰極催化劑,氧分子與(其中有遊歷通過外部電路)電子和質子發生反應形成水;而在此示例中,唯一的廢物產品,液體或蒸氣。

除了這種純氫氣類型,還有烴類燃料的燃料電池,包括柴油、甲醇(請參閱:直接甲醇燃料電池和非直接甲醇燃料電池)和化學氫化物。這些類型燃料的廢棄產品是二氧化碳和水。

質子交換膜燃料的不同組成部分是雙極板、電極、催化劑、膜和有必要的硬體。用於燃料電池的不同部分的材料類型不同。雙極板可以不同類型的材料製造,如金屬、表面包覆的金屬、石墨、柔性石墨C–C複合,carbon–polymer複合材料等。膜電極元件(多邊環境協定MEA),被稱為心的質子交換膜燃料和通常使夾在兩個催化劑塗層碳論文的質子交換膜。貴金屬元素鉑或類似類型通常作為催化劑在PEMFC中使用。另外,電解液可以是一種高分子膜。

質子交換膜燃料電池的議題

编辑

价格。美国能源部的报告说,在2011年,80-kW的车用燃料电池系统的成本在量产(预计到每年50万台)中的价格是每千瓦49美元。[15]目标价格是每千瓦35美元。约20年期间相比的斜坡那样成本降低是必要的,以使质子交换膜燃料电池可与目前市场上的技术竞争,包括汽油内燃机。[16]

水和空气的管理[17](在PEMFC电池)。在这种类型的燃料电池,膜必须是水化的,需要以它产生的水的完全相同的速率来蒸发掉水。

温度的管理。

某些种类的电池要求的持续性,服务寿命(英语:service life)或者特殊要求。

一些(非-PEDOT)阴极只有有限的一氧化碳容忍能力。

高溫燃料電池

编辑

固體氧化物燃料電池(SOFC)

编辑

主条目:固態氧化物燃料電池

固體氧化物燃料電池(英語:Solid Oxide Fuel Cell,缩写:SOFC)由用氧化钇稳定氧化锆(YSZ,<15μm)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被还原形成氧离子,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳的中间氧化产物反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。由于电池本体的构成材料全部是固体,可以不必像其他燃料电池那样制造成平面形状,而是常常制造成圆筒型。

SOFC的特点如下:

由于是在高温下运作(800-1000℃),通过设置底面循环,可以獲得超过60%效率的高效發電,使用壽命預期可以超過40000~80000小時。

由于氧离子是在电解质中移动,所以也可以用CO、天然氣、煤气化的气体作为燃料。[18]

SOFC系统的化学反应可以表达如下:[19]

阳极反应:2H2 + 2O2− → 2H2O + 4e−

阴极反应:O2 + 4e– → 2O2−

整体电池反应:2H2 + O2 → 2H2O

熔融碳酸鹽燃料電池(MCFC)

编辑

熔融碳酸盐燃料电池(英語:Molten Carbonate Fuel Cell,缩写:MCFC)要求650°C(1,200°F)高温,类似于SOFC。MCFC以熔融碱金属碳酸盐作电解质,并在高温下,这种盐变为熔化态允许电荷(负碳酸根离子)的在电池中移动。[20]

用於熔融碳酸鹽燃料電池(MCFC)系統中的化學反應可表示如下:[21]

陽極反應:CO32− + H2 → H2O + CO2 + 2e−

陰極反應:CO2 + ½O2 + 2e− → CO32−

整體反應:H2 + ½O2 → H2O

如同固體氧化物燃料電池(SOFC),熔融碳酸鹽燃料電池(MCFC)的缺點包括緩慢的啟動時間,是因為它們的運行溫度高。這使熔融碳酸鹽燃料電池(MCFC)系統不適合移動應用,而這項技術將最有可能被用於固定式燃料電池。熔融碳酸鹽燃料電池技術的主要挑戰是電池的壽命短。高溫和碳酸鹽電解質導致在陽極和陰極的腐蝕。這些因素加速MCFC元件的分解,從而降低耐久性和電池壽命。研究人員正在通過探索耐腐蝕材料部件,以及可以增加電池壽命而不降低性能的燃料電池的設計,来解決這個問題。[18]

碱性燃料电池(AFC)

编辑

主条目:碱性燃料电池

碱性燃料电池(alkaline fuel cell, AFC)是一种燃料电池,由法兰西斯·汤玛士·培根(Francis Thomas Bacon)所发明,以碳为电极,并使用氢氧化钾为电解质,操作温度约为摄氏100~250度(最新的碱性燃料电池操作温度约为摄氏23~70度)。NASA早在1960年时便开始将它运用在航天飞机及人造卫星上,包括著名的阿波罗计划也使用这种燃料电池。AFC的电能转换效率为所有燃料电池中最高的,最高可达70%。

4种主要燃料電池的比較

编辑

从21世紀初到現在,4种主要燃料電池的研究开发进展比较如下:[22]

4方式的比较

PEMFC固体高分子

PAFC磷酸

MCFC熔融碳酸盐

SOFC固体氧化物

电解质

电解质材料

交换膜

磷酸盐

碳酸锂,碳酸钠,碳酸

比如稳定氧化锆

移动离子

H+

H+

CO32-

O2-

使用模式

在基质中浸渍

在基质中浸渍、或粘贴

薄膜、薄板

反应

催化剂

阳极

H2→2H++2e-

H2→2H++2e-

H2+CO32-→H2O+CO2+2e-

H2+O2-→H2O+2e-

阴极

1

2

{\displaystyle {\tfrac {1}{2}}}

O2+2H++2e-→H2O

1

2

{\displaystyle {\tfrac {1}{2}}}

O2+2H++2e-→H2O

1

2

{\displaystyle {\tfrac {1}{2}}}

O2+CO2+2e-→CO32-

1

2

{\displaystyle {\tfrac {1}{2}}}

O2+2e-→O2-

运行温度(℃)

80-100

190-200

600-700

700-1,000

燃料

氢、一氧化碳

氢、一氧化碳

发电效率(%)

30-40

40-45

50-65

50-70

设想发电能力

数W-数十kW

100-数百kW

250kW-数MW

数kW-数十MW

设想用途

手机、家庭电源、汽车

发电

发电

家庭电源、发电

开发状况

家庭用实用化、汽车2015年预计实用化

废水处理厂、医院、应急电源

家庭用实用化、大型定制在开发中